Abstract
In most modern years, the dimensions and materials of the blades of steam turbines have increased by raising the power of steam turbines. In preference to the wide-ranging application of turbo machinery and constant improvement of steam turbine blade materials and design techniques, steam turbine blade design and material behavior study technology have turned out to be a significant following in the line of investigation field. The optimized design and material behavior are the most significant factors limiting the efficiency of steam turbines, which is associated with the operating effectiveness of the steam turbines. On the other hand, because of the complicated form and the maximal effects of material behavior, it is not easy to predict and examine the behavior of the turbine blades for different geometrical shapes and materials by both the systematic method and an engineering generalization scheme. The forecasted finite element analysis method offers an efficient means to resolve those complicated project analysis and material behavior challenges. It can be utilized to establish the distribution of stress and heat flux in the entire blade geometry caused by the coupling effect of thermal stress distribution and axial loads on the blade structure. Attempts have been made to match the optimized blade thickness of the steam turbine by utilizing Finite Element Analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Innovative Technology and Exploring Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.