Abstract

The O–O bond length is often used as a structural indicator to determine the valence states of bound O2 ligands in biological metal–dioxygen intermediates and related biomimetic complexes. Here, we report very distinct O–O bond lengths found for three crystallographic forms (1.229(4), 1.330(4), 1.387(2) Å at 100 K) of a side-on iron–dioxygen species. Despite their different O–O bond distances, all forms possess the same electronic structure of Fe(III)–O2•–, as evidenced by their indistinguishable spectroscopic features. Density functional theory and ab initio calculations, which successfully reproduce spectroscopic parameters, predict a flat potential energy surface of an η2-O2 motif binding to the iron center regarding the O–O distance. Therefore, the discrete O–O bond lengths observed likely arise from differential intermolecular interactions in the second coordination sphere. The work suggests that the O–O distance is not a reliable benchmark to unequivocally identify the valence state of O2 ligands for metal–dioxygen species in O2-utilizing metalloproteins and synthetic complexes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.