Abstract

In this paper, we present the results of structural and photoluminescence (PL) studies on vertically aligned, 20-period In 0.33Ga 0.67As/GaAs quantum dot stacks, grown by molecular beam epitaxy (MBE). Two different In 0.33Ga 0.67As/GaAs quantum dot stacks were compared. In one case, the In 0.33Ga 0.67As layer thickness was chosen to be just above its transition thickness, and in the other case, the In 0.33Ga 0.67As layer thickness was chosen to be 30% larger than its transition thickness. The 2D–3D growth mode transition time was determined using reflection high-energy electron diffraction (RHEED). Structural studies were done on these samples using high-resolution X-ray diffraction (HRXRD) and cross-sectional transmission electron microscopy (XTEM). A careful analysis showed that the satellite peaks recorded in X-ray rocking curve show two types of periodicities in one sample. We attribute this additional periodicity to the presence of an aligned vertical stack of quantum dots. We also show that the additional periodicity is not significant in a sample in which the quantum dots are not prominently formed. By analyzing the X-ray rocking curve in conjunction with RHEED and PL, we have estimated the structural parameters of the quantum dot stack. These parameters agree well with those obtained from XTEM measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.