Abstract

We discuss molecular dynamics (MD) computer simulations of a tetracosane (C24H50) monolayer physisorbed onto the basal plane of graphite. The adlayer molecules are simulated with explicit hydrogens, and the graphite substrate is represented as an all-atom structure having six graphene layers. The tetracosane dynamics modeled in the fully atomistic manner agree well with experiment. The low-temperature ordered solid organizes into a rectangularly centered structure that is not commensurate with underlying graphite. Above T=200 K, as the molecules start to lose their translational and orientational order via gauche defect formation a weak smectic mesophase (observed experimentally but never reproduced in united atom (UA) simulations) appears. The phase behavior of the adsorbed layer is critically sensitive to the way the electrostatic interactions are included in the model. If the electrostatic charges are set to zero (as for a UA force field), then the melting temperature increases by approximately 70 K with respect to the experimental value. When the nonbonded 1-4 interaction is not scaled, the melting temperature decreases by approximately 90 K. If the scaling factor is set to 0.5, then melting occurs at T=350 K, in very good agreement with experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.