Abstract

Poly(3-hexylthiophene) (P3HT)-graphene nanocomposites were synthesized via in situ oxidative polymerization of 3-hexylthiophene monomer in the presence of graphene. The main thrust was to investigate the structural and optoelectronic properties of P3HT-graphene nanocomposites with various graphene concentrations. NMR spectroscopy was used to determine the regioregularity of the polymer composites, whereas Fourier transform infrared spectroscopy and differential scanning calorimetry were used to study their structural and thermal properties. Moreover, cyclic voltammetry was employed to evaluate the HOMO levels of the nanocomposites, while optical spectrophotometry (UV-Vis-NIR) was utilized to determine the optical bandgap of the composites. The information from the aforementioned techniques was used to estimate the HOMO-LUMO energy levels. The results revealed changes in the optical bandgap of P3HT with increasing graphene content. Furthermore, an extensive study aiming at the effect of graphene content on the optical constants of P3HT was conducted using ellipsometry. Photoluminescence analysis of the samples showed no quenching effect of photoluminescence emission with increasing graphene content. Our studies indicate that the inclusion of graphene impacts the optoelectronic properties of P3HT, which can further be used for advanced applications, such as organic solar cells, organic light emitting diodes, organic field-effect transistors, and polymer batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.