Abstract
Metal chalcogenide copper sulfide nanoparticles exhibit a broad spectrum of applications, encompassing solar cells, photovoltaics, optical devices, ionic materials and more. In this investigation, CuS nanoparticles were synthesized through a facile co-precipitation method. The synthesis involved employing copper sulfate and thiourea as precursors for Cu and S, respectively. Quantitative analysis, confirming the presence of Cu–S and S–S bonds, was conducted through Raman spectroscopy. X-ray diffraction (XRD) was employed to ascertain the structural phases. The semiconducting behavior of the synthesized CuS nanoparticles was studied through UV–Vis spectroscopy, correlating optical absorption and energy bandgap. The comprehensive findings suggest that the prepared CuS nanoparticles hold promise for advancements in photovoltaic technology and optical devices.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have