Abstract

AbstractThe structural and optoelectronic properties of silicon thin films prepared by hot wire chemical vapor deposition and radio frequency plasma enhanced chemical vapor deposition are studied in the range of substrate temperatures (Tsub)from 100 °C to 25 °C. The defect density, structure factor and bond angle disorder of amorphous silicon films (a-Si:H) deposited by both techniques are strongly improved by the use of hydrogen dilution. Correlation of these structural properties with important optoelectronic properties, such as photo-to-dark conductivity ratio, is made. Microcrystalline silicon (μc-Si:H) is obtained using HW with a large crystalline fraction for hydrogen dilutions above 85% independently of Tsub. The deposition of μc-Si:H by RF requires increasing the hydrogen dilution and shows decreasing crystalline fraction as Tsub is decreased. The properties of the low Tsub films are compared to those of samples produced at 175 °C and 250 °C in the same reactors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.