Abstract

We report on the changes in structural, morphological, and optical properties of sol-gel derived ZnO and ZnO:Fe nanoparticles due to dense electronic excitations produced by heavy ion irradiations using 200 MeV Ag+15 ion beams. X-ray diffraction studies with Rietveld refinement show that the samples are single phase and tensile strain has been developed in the ion-irradiated samples. The Raman spectroscopy measurements show that ion-irradiation results in microscopic structural disorders and breaking of translational symmetry giving rise to local distortions in the lattice. Atomic force microscopy studies show that roughness of the pellets increases strongly for pure ZnO as compared with Fe-doped ZnO due to ion-irradiation. Fourier transform infrared analysis confirms tetrahedral coordination of O ions surrounding the Zn-ions and surface modification of the nanoparticles. The UV-Vis spectroscopy measurements show that the band gap increases on Fe doping which may be due to 4s–3d and 2p–3d interactions and the Burstein-Moss band filling effect. The band gap decreases after irradiation which can be interpreted on the basis of creation of some new localized energy states above the valence band. Photoluminescence (PL) intensity is enhanced and two new emission bands viz. a blue band at ∼480 nm (related to surface defects) and a green band at ∼525 nm (related to O vacancies) are observed in ion-irradiated nanoparticles. The enhancement of PL-intensity in irradiated samples is attributed to the increase of different defect states and Zn−O bonds on the surfaces of the irradiated nanoparticles arising from surface modification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call