Abstract
ABSTRACTWe have investigated structural and optical properties of SiGeC layers. Bulk and multiquantum wells heterostructures were grown by rapid thermal chemical vapor deposition. The photoluminescence of these structures exhibits two distinct features : deep level photoluminescence associated with localized states and bandedge photoluminescence which gives an indication of the band gap variation due to carbon incorporation in substitutional sites. In the case of multiquantum wells heterostructures, a strong segregation is reported as the growth temperature is decreased. An alternate technique to incorporate carbon in SiGe layers, the pulsed laser induced epitaxy with an excimer laser, is presented. The incorporation of carbon in substitutional sites is evidenced by Raman spectroscopy. As the laser flux is increased, new Raman lines associated to carbon-induced disorder are observed in the spectra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.