Abstract
Abstract Epitaxially grown ZnO thin films on 4H–SiC (0 0 0 1) substrates were prepared by using a pulsed laser deposition (PLD) technique at various substrate temperatures from room temperature to 600 °C. The crystallinity, in-plane relationship, surface morphology and optical properties of the ZnO films were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM) and photoluminescence (PL) measurements, respectively. XRD analysis showed that highly c -axis oriented ZnO films were grown epitaxially on 4H–SiC (0 0 0 1) with no lattice rotation at all substrate temperatures, unlike on other hexagonal-structured substrates, due to the very small lattice mismatch between ZnO and 4H–SiC of ∼5.49%. Further characterization showed that the substrate temperature has a great influence on the properties of the ZnO films on 4H–SiC substrates. The crystalline quality of the films was improved, and surfaces became denser and smoother as the substrate temperature increased. The temperature-dependent PL measurements revealed the strong near-band-edge (NBE) ultraviolet (UV) emission and the weak deep-level (DL) blue-green band emission at a substrate temperature of 400 °C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.