Abstract

ZnO thin films were prepared on Si (1 1 1) substrates at various temperatures from 250 to 700 °C using pulsed laser deposition (PLD) technique in order to investigate the structural and optical properties of the films. The structural and morphological properties of the films were investigated by XRD and SEM measurements, respectively. The quality of the films was improved with the increase of the temperature. By XRD patterns, the FWHMs of the (0 0 2) peaks of the ZnO films became narrower when the temperatures were above 500 °C. The FWHMs of the peaks of (0 0 2) of the films were as narrow as about 0.19° when films were grown at 650 and 700 °C. This indicates the superior crystallinity of the films. The optical properties of the films were studied by photoluminescence spectra using a 325 nm He–Cd laser. The two strongest UV peaks were found at 377.9 nm from ZnO films grown at 650 and 700 °C. This result is consistent with that of the XRD investigation. Broad bands in visible region from 450 to 550 nm were also observed. Our works suggest that UV emissions have close relations with not only the crystallinity but also the stoichiometry of the ZnO films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call