Abstract

Thin film has been extensively study due to better structural, surface morphology, and optical properties. The combination of two materials will enhance the properties of thin film. In this study, TiO2/ZnO thin films were deposited on glass substrates via sol-gel method. TiO2 acts as pre-deposited thin film with calcination temperatures at 400 °C, 500 °C, and 600 °C. The post-deposition of TiO2/ZnO thin films were calcined at 500 °C and 600 °C. TiO2 sol-gel was synthesis from titanium (IV) butoxide and butanol as the precursor, while ZnO sol-gel was synthesis from zinc acetate dehydrate and isopropanol as the precursor. The TiO2/ZnO thin films were characterized by X-ray diffraction (XRD), atomic force microscope (AFM), and ultraviolet visible spectroscopy (UV-Vis). The effect of calcination temperature and pre-deposited TiO2 thin films show difference results of bilayer thin films. The XRD analysis shows all TiO2/ZnO thin films growth with TiO2 anatase crystalline phase at orientation (1 0 1) and ZnO zincite phase at orientation (1 0 1). The structural properties of TiO2/ZnO thin films were improved by controlling the calcination temperature. Based on AFM analysis, the RMS value for TiO2/ZnO decreases as the calcination temperature increased. The compacted and dense surface roughness were controlled by the temperature. Meanwhile, the percentage of thin film ultraviolet transmittance can be enhanced with combination of two materials, TiO2 and ZnO. Therefore, the pre-deposited layer of thin film with influenced by calcination temperature will improve the crystallinity, surface morphology, and optical properties of TiO2/ZnO thin films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call