Abstract

The optimization of the electronic properties of InGaP/GaAs MQWs, to be inserted in multilayers heterostructure for novel photovoltaic devices, was performed by structural, optical and photoelectrical measurements. Different sequences of nominally undoped InGaP and GaAs alternated layers were grown by low-pressure metalorganic vapour phase epitaxy, employing tertiarybutylarsine and tertiarybutylphosphine as metalorganic precursors for the V-group elements. In order to minimize the As/P exchange effect, the interface In segregation, and to control the whole lattice matching, single and multi-quantum wells (MQWs) with different: (i) periods, (ii) well widths, (iii) growth temperatures, (iv) gas-switching sequences at the interfaces and (v) indium concentrations in the InGaP alloy, were prepared and investigated. The interface sharpness and the compositional fluctuation of thick MQW region containing up to 40 well-barrier sequences were investigated for the modelling, realization and evaluation of test structures based on low-dimensional systems for third generation solar cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.