Abstract

ZnO microrods are fabricated by a simple hydrothermal growth route using zinc acetate dihydrate [Zn(CH3COO)2·2H2O] and hexamethylenetetramine [(CH2)6N4] aqueous solutions. The as-prepared microrods exhibit uniform dimensions, well-faceted surfaces, and hexagonal crystal structure. The microrods also have an intense ultraviolet (UV) emission at 392 nm with an average lifetime of 80 ps. No peaks are observed at the visible wavelengths that can be attributed to defect-related emissions. With excellent structural and optical properties and with loose adhesion to their substrates, the ZnO microrods can be isolated, harvested, and manipulated and can be integrated as building blocks of a microstructured scintillator screen. The proposed scintillator screen possibly offers efficient and precise detection with high resolution. Hydrothermal-grown ZnO microrods then hold a promise towards radiation detector innovation and integrated optoelectronic microsystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.