Abstract

We report on the structural and optical characteristics of position-controlled GaN/ZnO coaxial nanotube heterostructure and GaN/InxGa1−xN coaxial nanotube quantum structure arrays for light-emitting diode (LED) applications. The GaN/ZnO nanotube heterostructures were fabricated by growing a GaN layer on the entire surface of position-controlled ZnO nanotube arrays using low-pressure metal-organic vapour-phase epitaxy. As determined by transmission-electron microscopy (TEM), an abrupt and coherent interface between the core ZnO and the GaN overlayer was observed. The optical characteristics of heteroepitaxial GaN/ZnO nanotube heterostructures were also investigated using cathodoluminescence (CL) spectroscopy. This position-controlled growth of high-quality single crystalline GaN/ZnO coaxial nanotube heterostructures allowed the fabrication of artificial arrays of high-quality GaN-based coaxial quantum structures by the heteroepitaxial growth of GaN/InxGa1−xN multiple quantum wells along the circumference of the GaN/ZnO nanotubes. The optical and structural characteristics of the position-controlled GaN/InxGa1−xN coaxial nanotube quantum structures were investigated by using CL spectroscopy and TEM analysis, respectively. The green LED microarrays were successfully fabricated by the controlled heteroepitaxial coaxial coatings of GaN/InxGa1−xN coaxial nanotube quantum structures and the outermost Mg-doped p-type GaN layer onto the GaN/ZnO coaxial nanotube heterostructures, presumably implying that the position-controlled growth of high-quality GaN/ZnO coaxial nanotube heterostructure arrays provides a general and rational route of integrating vertical nanodevices for nanoscale electronics and optoelectronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call