Abstract

In this work, powder mixtures of cobalt and amorphous carbon of the Co-17 wt%C composition were processed by high-energy ball milling and annealing/Spark Plasma Sintering in vacuum to study the morphological transformations associated with graphitization of carbon in the powder and consolidated states of the material. High-energy ball milling led to the hcp-fcc transition in cobalt. During annealing of the milled powder, cobalt nanoparticles were encapsulated in graphitic shells. In the consolidated state, graphitization of carbon resulted in the formation of a 3D graphitized structure. Cobalt remained as the fcc phase in the annealed powders and sintered compacts due to the stabilizing action of graphitic shells and graphitic 3D walls, respectively. Selective dissolution of cobalt allowed obtaining porous graphitic materials composed of platelet-shape crystallites 20 nm thick. The specific surface area of the porous graphitized materials obtained from the compacts sintered at 800–1000 °C was of the order of 100 m2 g−1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.