Abstract
Serotonin N-acetyltransferase (SNAT) is the key rate-limiting enzyme in melatonin biosynthesis. It mediates melatonin biosynthesis in plants by using serotonin and 5-methoxytryptamine (5-MT), but little is known of its underlying mechanisms. Herein, we present a detailed reaction mechanism of a SNAT from Oryza sativa through combined structural and molecular dynamics (MD) analysis. We report the crystal structures of plant SNAT in the apo and binary/ternary complex forms with acetyl-CoA (AcCoA), serotonin, and 5-MT. OsSNAT exhibits a unique enzymatically active dimeric fold not found in the known structures of arylalkylamine N-acetyltransferase (AANAT) family. The key residues W188, D189, D226, N220, and Y233 located around the active pocket are important in catalysis, confirmed by site-directed mutagenesis. Combined with MD simulations, we hypothesize a novel plausible catalytic mechanism in which D226 and Y233 function as catalytic base and acid during the acetyl-transfer reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.