Abstract
ABSTRACTDiamond-like carbon (DLC) films have been prepared by pulsed laser deposition (PLD) (wavelength 248 nm), ablating highly oriented pyrolytic graphite (HOPG) at room temperature in a vacuum of 10−2Pa, at fluences between 0.5 and 35 Jcm−2. Films have been deposited on Si(100) with and without a SiC interlayer. Structural analysis, such as visible and UV Raman, Infrared and Electron Energy Loss (EEL) spectroscopies show that the films are hydrogen-free and undergo a transition, from mainly disordered graphitic to up to 80% tetrahedral amorphous carbon (ta-C), above a laser threshold fluence of 5 J cm−2. The measured residual stresses of as deposited ta-C films do not exceed 2 GPa. Scratch tests show excellent adhesion properties. Low friction coefficients (0.05-0.1) have been measured in ambient humidity. Nanoindentation indicates that film hardness is as high as 70 GPa
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.