Abstract

Collagen constitutes one-third of the human proteome, providing mechanical stability, elasticity, and strength to organisms. Normal type I collagen is a heterotrimer triple-helical molecule consisting of two α-1 chains and one α-2 chain. The homotrimeric isoform of type I collagen, which consists of three α-1 chains, is only found in fetal tissues, fibrosis, and cancer in humans. A mouse model of the genetic brittle bone disease, osteogenesis imperfect, oim, is characterized by a replacement of the α-2 chain by an α-1 chain, resulting also in a homotrimer collagen molecule. Experimental studies of oim mice tendon and bone have shown reduced mechanical strength compared to normal mice. The relationship between the molecular content and the decrease in strength is, however, still unknown. Here, fully atomistic simulations of a section of mouse type I heterotrimer and homotrimer collagen molecules are developed to explore the effect of the substitution of the α-2 chain. We calculate the persistence length and carry out a detailed analysis of the structure to determine differences in structural and mechanical behavior between hetero- and homotrimers. The results show that homotrimer persistence length is half of that of the heterotrimer (96 Å vs. 215 Å), indicating it is more flexible and confirmed by direct mechanical testing. Our structural analyses reveal that in contrast to the heterotrimer, the homotrimer easily forms kinks and freely rotates with angles much larger than heterotrimer. These local kinks may explain the larger lateral distance between collagen molecules seen in the fibrils of oim mice tendon and could have implications for reducing the intermolecular cross-linking, which is known to reduce the mechanical strength.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.