Abstract

Reaction of Co(NCS)2 with 4-ethylpyridine leads to the formation of three new compounds of composition Co(NCS)2(4-ethylpyridine)4 (1), [(Co(NCS)2]2(4-ethylpyridine)6 (2), and [Co(NCS)2(4-ethylpyridine)2]n (3). In all compounds the coordination of the Co(II) ions is distorted octahedral. 1 consists of discrete monomeric complexes and in 2 two Co(II) cations are linked by pairs of μ-1,3-bridging thiocyanato ligands into dimers. In the crystal structure of 3 the Co(II) cations are connected into chains by the same bridge as in 2. Magnetic studies show that 1 and 2 are paramagnets down to a temperature of 2 K, while compound 3, which is the main object of this study, is an antiferromagnet with the Néel temperature T(N) = 3.4 K. Its magnetic structure is built from ferromagnetic chains, which are weakly antiferromagnetically coupled. With increasing magnetic field a metamagnetic transition starts at ~175 Oe, as observed for a polycrystalline sample. Magnetic relaxations, which were observed in the antiferromagnetic state, are retained at the metamagnetic transition. With decreasing field 3 remains in a state, in which except of the faster magnetic relaxation process in single chains also a slower process coexists resulting in the appearance of a magnetic hysteresis loop.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call