Abstract

Platelet activation under blood flow is thought to be critically dependent on the autologous secretion of soluble platelet agonists (chemical activators) such as ADP and thromboxane. However, recent evidence challenging this model suggests that platelet activation can occur independent of soluble agonist signalling, in response to the mechanical effects of micro-scale shear gradients. A key experimental tool utilized to define the effect of shear gradients on platelet aggregation is the murine intravital microscopy model of platelet thrombosis under conditions of acute controlled arteriolar stenosis. This paper presents a computational structural and hydrodynamic simulation of acute stenotic blood flow in the small bowel mesenteric vessels of mice. Using a homogeneous fluid at low Reynolds number (0.45) we investigated the relationship between the local hydrodynamic strain-rates and the severity of arteriolar stensosis. We conclude that the critical rates of blood flow acceleration and deceleration at sites of artificially induced stenosis (vessel side-wall compression or ligation) are a function of tissue elasticity. By implementing a structural simulation of arteriolar side wall compression, we present a mechanistic model that provides accurate simulations of stenosis in vivo and allows for predictions of the effects on local haemodynamics in the murine small bowel mesenteric thrombosis model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.