Abstract

Flavin-dependent halogenases (FDHs) have tremendous applications in synthetic chemistry. A single-component FDH, AetF, exhibits both halogenase and reductase activities in a continuous polypeptide chain. AetF exhibits broad substrate promiscuity and catalyzes the two-step bromination of l-tryptophan (l-Trp) to produce 5-bromotryptophan (5-Br-Trp) and 5,7-dibromo-l-tryptophan (5,7-di-Br-Trp). To elucidate the mechanism of action of AetF, we solved its crystal structure in complex with FAD, FAD/NADP+, FAD/l-Trp, and FAD/5-Br-Trp at resolutions of 1.92–2.23 Å. The obtained crystal structures depict the unprecedented topology of single-component FDH. Structural analysis revealed that the substrate flexibility and dibromination capability of AetF could be attributed to its spacious substrate-binding pocket. In addition, highly-regulated interaction networks between the substrate-recognizing residues and 5-Br-Trp are crucial for the dibromination activity of AetF. Several Ala variants underwent monobromination with >98 % C5-regioselectivity toward l-Trp. These results reveal the catalytic mechanism of single-component FDH for the first time and contribute to efficient FDH protein engineering for biocatalytic halogenation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.