Abstract

In order to improve bone defect regeneration, the development of new adaptive biomaterials and their functional and biological validation is warranted. Glycosaminoglycans (GAGs) are important extracellular matrix (ECM) components in bone and may display osteogenic properties that are potentially useful for biomaterial coatings. Using hyaluronan (HA), chondroitin sulfate (CS) and chemically modified highly sulfated HA and CS derivatives (sHA3 and sCS3; degree of sulfation ∼3), we evaluated how GAG sulfation modulates Wnt signaling, a major regulator of osteoblast, osteoclast and osteocyte biology. GAGs were tested for their capability to bind to sclerostin, an inhibitor of Wnt signaling, using surface plasmon resonance and molecular modeling to characterize their interactions. GAGs bound sclerostin in a concentration- and sulfate-dependent manner at a common binding region. These findings were confirmed in an LRP5/sclerostin interaction study and an in vitro model of Wnt activation. Here, pre-incubation of sclerostin with different GAGs led to a sulfate- and dose-dependent loss of its bioactivity. Using GAG-biotin derivatives in a competitive ELISA approach sclerostin was shown to be the preferred binding partner over Wnt3a. In conclusion, highly sulfated GAGs might control bone homeostasis via interference with sclerostin/LRP5/6 complex formation. Whether these properties can be utilized to improve bone regeneration needs to be validated in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.