Abstract

In order to improve bone regeneration, in particular in aged and multimorbid patients, the development of new adaptive biomaterials and their characterization in terms of their impact on bone biology is warranted. Glycosaminoglycans (GAGs) such as hyaluronan (HA) are major extracellular matrix (ECM) components in bone and may display osteogenic properties that are potentially useful for biomaterial coatings. Using native and synthetically derived sulfate-modified HA, we evaluated how GAG sulfation modulates the activity of two main regulators of osteoclast function: receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG). GAGs were tested for their capability to bind to OPG and RANKL using surface plasmon resonance (SPR), ELISA and molecular modeling techniques. Results were validated in an in vitro model of osteoclastogenesis. Sulfated GAGs bound OPG but not RANKL in a sulfate-dependent manner. Furthermore, OPG pre-incubated with different GAGs displayed a sulfate- and dose-dependent loss in bioactivity, possibly due to competition of GAGs for the RANKL/OPG binding site revealing a potential GAG interaction site at the RANKL/OPG interface. In conclusion, high-sulfated GAGs might significantly control osteoclastogenesis via interference with the physiological RANKL/OPG complex formation. Whether these properties can be utilized to improve bone regeneration and fracture healing needs to be validated in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.