Abstract

Neuronal expression of the mouse glutamate decarboxylase 67 (mGAD67) gene occurs exclusively in neurons that synthesize and release GABA (GABAergic neurons). This gene is also expressed in pancreatic islet cells and testicular spermatocytes. In order to elucidate the molecular mechanisms underlying the regulation of mGAD67 gene expression, we isolated and characterized the 5′-flanking region of this gene. Sequence analysis of a 10.2-kb DNA fragment of this gene containing a promoter region (8.4 kb) and noncoding exons 0A and 0B revealed the presence of numerous potential neuron-specific cis-regulatory elements. Functional analysis of the 5′-flanking region of exons 0A and 0B by transient transfection into cultured cells revealed that the region −98 to −52 close to exon 0A is important for the transcriptional activity of both exons 0A and 0B. In addition, we used transgenic mice to examine the expression pattern conferred by the 10.2 kb DNA fragment of the mGAD67 gene fused to the bacterial lacZ reporter gene. Transgene expression was observed in neurons of particular brain regions containing abundant GABAergic neurons such as the basal ganglia, in pancreatic islet cells and in testicular spermatocytes and spermatogonia. These results suggest that the 10.2 kb DNA fragment of the mGAD67 gene contains regulatory elements essential for its targeted expression in GABAergic neurons, islet cells and spermatocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.