Abstract

Diamond films are extensively studied for applications as functional material for UV photoconductors. CVD-grown polycrystalline diamond films show very interesting performances, but their complete exploitation is actually limited by a slow time response if compared to other materials, by a relatively high concentration of structural defects, impurities and grain boundaries, which may affect the collection length of photogenerated charges. High-quality single crystal diamonds could solve some of these problems. The absence of grain boundaries can produce longer collection lengths. The nitrogen and impurity contents can be reduced and then large type-IIa diamond single-crystals can be obtained. In this work, a detailed structural and functional characterization of type Ib HPHT diamond crystals has been carried out and the results have been compared to similar characterizations of CVD films to evaluate the different behavior, taking also into account that these high pressure high temperature (HPHT) diamond crystals contain several tens ppm of nitrogen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.