Abstract
Plant saponins are attractive biosurfactants and have been used to enhance phytoremediation. There are only limited reports on saponins produced by bacteria. Here, we report structural and functional characterization of a novel saponin produced by Bacillus sp. IITD106. Biosurfactant production was determined by emulsion index, drop collapse, oil displacement and hemolytic assays. The biosurfactant was stable over a range of temperature (30 °C to 70 °C), salinity (0–150 g liter−1) and pH (4−10). The surface tension of the medium reduced from 58.89 mN/m to 27.29 mN/m using the isolated biosurfactant. Chromatographic analysis revealed the biosurfactant to be a glycolipid. LCMS, FT-IR and NMR analysis identified the biosurfactant to be a saponin containing two sugar groups and a 5 ringed triterpene sapogenin unit. Genome sequencing of the strain revealed the presence of genes responsible for biosynthesis of saponin. Statistical optimization of culture medium resulted in 9.3-fold increase in biosurfactant production. Kinetics study of biosurfactant production performed in a stirred tank batch bioreactor resulted in 6.04 g liter−1 and 6.9 g liter−1 biomass and biosurfactant concentration, respectively. The biosurfactant was found to solubilize polycyclic aromatic hydrocarbons. The potential of cell free biosurfactant containing broth to enhance oil recovery was tested in a sand pack column and recovery of 63% of residual oil was observed. To our knowledge this is the first report of saponin production by any of the strains of Bacillus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.