Abstract

Chitinase gene from the carnivorous plant, Drosera rotundifolia , was cloned and functionally characterised. Plant chitinases are believed to play an important role in the developmental and physiological processes and in responses to biotic and abiotic stress. In addition, there is growing evidence that carnivorous plants can use them to digest insect prey. In this study, a full-length genomic clone consisting of the 1665-bp chitinase gene (gDrChit) and adjacent promoter region of the 698bp in length were isolated from Drosera rotundifolia L. using degenerate PCR and a genome-walking approach. The corresponding coding sequence of chitinase gene (DrChit) was obtained following RNA isolation from the leaves of aseptically grown in vitro plants, cDNA synthesis with a gene-specific primer and PCR amplification. The open reading frame of cDNA clone consisted of 978 nucleotides and encoded 325 amino acid residues. Sequence analysis indicated that DrChit belongs to the class I group of plant chitinases. Phylogenetic analysis within the Caryophyllales class I chitinases demonstrated a significant evolutionary relatedness of DrChit with clade Ib, which contains the extracellular orthologues that play a role in carnivory. Comparative expression analysis revealed that the DrChit is expressed predominantly in tentacles and is up-regulated by treatment with inducers that mimick insect prey. Enzymatic activity of rDrChit protein expressed in Escherichia coli was confirmed and purified protein exhibited a long oligomer-specific endochitinase activity on glycol-chitin and FITC-chitin. The isolation and expression profile of a chitinase gene from D. rotundifolia has not been reported so far. The obtained results support the role of specific chitinases in digestive processes in carnivorous plant species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.