Abstract

A new hypothesis for the benefit of carnivory in plants (i.e., an alternative to aerenchyma for avoiding hypoxia) is evaluated. Root porosity and root depth were quantified in eight carnivorous plant species and 48 non-carnivorous species within a nutrient-poor wet pine savanna in south Mississippi, USA. Carnivorous and non-carnivorous plant species were contrasted with respect to their indication of wetlands, open habitats, and habitats with nutrient-poor soils. We used path analysis, multiplicative regression, and a field experiment to test hypotheses of the effects of soil moisture/hypoxia on the abundance of carnivorous and non-carnivorous plants. All carnivorous plant species produced non-porous roots (or no roots), which were shallower than the average for non-carnivorous plants (6.9 ± 0.95 cm vs. 11.9 ± 0.96 cm), even after correcting for plant size. Root porosity in non-carnivorous species (mean = 22%) was positively correlated with root depth ( r = 0.6). Despite lacking porous roots, carnivorous plants were four times more indicative of wetland habitats than were the non-carnivorous species encountered in the wetland studied here. Carnivorous plants, along with non-carnivorous plants with well-developed aerenchyma, were positively associated with the wettest microsites and were more negatively affected by elevating the substrate than were non-carnivorous plants with low-porosity roots. Non-carnivorous plants with shallow roots, while less indicative of wetlands and less abundant in wet microsites of the wet pine savanna than were carnivorous plants, were no less indicative of nutrient-poor soils than were carnivorous plants. Results supported the hypothesis that carnivory is advantageous in wet soils and disadvantageous in drier (including mesic) soils and are more indicative of wetland conditions than of low soil fertility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call