Abstract
We developed a phenology-based growth model(PG model) for Spartina alterniflora that incorporates the effects of light, temperature, and salinity on plant production. The PG model is the first to quantify carbon translocation between both above- and below-ground biomass across three phenological periods: growth, senescence, and dormancy periods. This model, fitted to field data from short, medium, and tall S. alterniflora types, estimates physiological parameters such as mass-specific rates of carbon translocation. Once parameterized, the model is applied in forward mode to predict whole-plant production, growth, respiration, mortality, and translocation. Model results reveals that short forms allocate 82 % of photosynthate to below-ground biomass during the growing season, compared to tall (52 %) and medium (22 %) types. However, tall forms, with extensive above-ground biomass, show the highest absolute carbon translocation to below-ground tissues during growth(ave. 3940 g dry weight m−2) and senescence(ave. 265 g dry weight m−2) period. An average mortality rate of 52 % of net production in the tall form below-ground biomass throughout the year indicates a substantial contribution to organic carbon sequestration within the habitat sediment. Model results also reveal that the carbon translocation from below- to above-ground tissues may not be required for survival during winter in milder climate like Sapelo Island, Georgia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.