Abstract

The brackets are the important components of ITER edge localized modes (ELM) coils to connect the coils and rails. In order to assure the structural integrity and security of the bracket, the maximum tresca stress and stress intensity factor are examined from the viewpoints of structural and fracture mechanics. Based on the finite element method, the global upper ELM coils with simplified and detailed bracket are investigated. Since it is difficult to perform in-service inspection due to inaccessibility of in-vessel coils, it is important to estimate the allowable initial defect. Assuming an initial crack in the maximum first principal stress region on the bracket, the fracture mechanics analyses under different loads are performed. Results show that the bracket design is valid and feasible and the calculation method of finite element for stress intensity factor is feasible and reliable. Assuming the initial crack of 7 mm depth, the bracket can meet the crack growth criteria. The stress intensity factor of the bracket is mainly caused by electromagnetic (EM) load and the thermal load can reduce the stress intensity factor under EM load. The thermal load can make the crack grow on the surface of the bracket and the EM load can cause the crack to extend in the inner of the bracket.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.