Abstract
The prevalence of substrate cross-reactivity between AHL acylases and β-lactam acylases provides a glimpse of probable links between quorum sensing and antibiotic resistance in bacteria. Both these enzyme classes belong to the N-terminal nucleophile (Ntn)-hydrolase superfamily. Penicillin V acylases alongside bile salt hydrolases constitute the cholylglycine hydrolase (CGH) group of the Ntn-hydrolase superfamily. Here we report the ability of two acylases, Slac1 and Slac2, from the marine bacterium Shewanella loihica-PV4 to hydrolyze AHLs. Three-dimensional structure of Slac1reveals the conservation of the Ntn hydrolase fold and CGH active site, making it a unique CGH exclusively active on AHLs. Slac1homologs phylogenetically cluster separate from reported CGHs and AHL acylases, thereby representing a functionally distinct sub-class of CGH that might have evolved as an adaptation to the marine environment. We hypothesize that Slac1 could provide the structural framework for understanding this subclass, and further our understanding of the evolutionary link between AHL acylases and β-lactam acylases.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have