Abstract

Stable highly concentrated TiO2 sol has been synthesized using binary titanyl ammonium sulfate monohydrate, (NH4)2TiO(SO4)2 · H2O. Treatment of the sol with an ammonia solution has yielded a stable hydrogel, which, after being dried, is transformed into a TiO2 xerogel. Study of the structure-related sorption and crystalline-chemical properties of the synthesized xerogel has shown that it represents a semicrystalline micro/mesoporous material with a rather developed specific surface area (Ssp = 120 m2/g). According to potentiometric titration data, the point of zero charge (PZC) of this material is located at pH 3.9. Measurements of the electrophoretic mobility (by microelectrophoresis) of TiO2 xerogel particles in solutions of HCl, NaOH, and salts of mono-, bi-, and trivalent cations have shown that (1) the isoelectric point (IEP) of the particles lies in the vicinity of pH 6.2, i.e., at a much higher pH than that for PZC; (2) the presence of increasing amounts of 1: 1 and 2: 1 electrolytes causes a gradual and a dramatic reduction in the ζ potential of the particles, respectively; and (3), in the presence of an electrolyte with a trivalent counterion, the surface charge is reversed. The behavior of TiO2 xerogel in an electric field is similar to that of lyophobic particles, with the difference that there is no maximum in the ζ potential versus 1: 1 electrolyte concentration dependence and the measured IEP of the xerogel is much higher than its PZC. Possible reasons for this discrepancy have been discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call