Abstract

Metallic hydride clusters have greater importance due to its unique physicomechanical properties. For solid-state hydrogen storage, (HfH2)n clusters has been considered a promising candidate because of high hydrogen capacity, low cost and larger interacting affinity between atoms. The structural and electronic properties of (HfH2)n clusters are investigated by employing the density functional theory. From the DFT calculations, it is found that Hf atom occupies central position while H atoms tends to occupy at vertex spots. Through structural stability analysis, the calculated binding energy and second order energy difference of (HfH2)n clusters increases from (HfH2)5 through (HfH2)30. The charge density distribution and results of Bader analysis revealed ionic bonding character between Hf and H atoms and transfer of electrons is observed from Hf to H atoms. The orbital overlapping contribution of the interacting Hf and H atom is also performed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.