Abstract
We investigated the Sb-doping effects on ZnO thin film using RF (radio frequency) magnetron sputtering and RTA (rapid thermal annealing). The structural and electrical properties of the thin films were measured by X-ray diffraction, SEM (scanning electron microscope), and Hall effect measurement. Thin films were deposited at a high temperature of 800°C in order to improve the crystal quality and were annealed for a short time of only 3 min. The structural properties of undoped and Sb-doped films were considerably improved by increasing oxygen content in the Ar-O2 gas mixture. Sb-doping also significantly decreased the electron concentration, making the films p-type. However, the crystallinity and surface roughness of the films degraded and the mobility decreased while increasing Sb-doping content, likely as a result of the formation of smaller grain size. From this study, we observed the transition to the p-type behavior at 1.5 at.% of Sb. The thin film deposited with this doping level showed a hole concentration of 4.412 × 1017 cm−3 and thus is considered applicable to p-type ZnO thin film.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.