Abstract
Silicon substrate damage caused by HBr/O2 plasma exposure was investigated by spectroscopic ellipsometry (SE), high-resolution Rutherford backscattering spectroscopy, and transmission electron microscopy. The damage caused by H2, Ar, and O2 plasma exposure was also compared to clarify the ion-species dependence. Although the damage basically consists of a surface oxidized layer and underlying dislocated Si, the damage structure strongly depends on the incident ion species, ion energy, and oxidation during air and plasma exposure. In the case of HBr/O2 plasma exposure, hydrogen generated the deep damaged layer (∼10 nm), whereas ion-enhanced diffusion of oxygen, supplied simultaneously by the plasma, caused the thick surface oxidation. In-line monitoring of damage thicknesses by SE, developed with an optimized optical model, showed that the SE can be used to precisely monitor damage thicknesses in mass production. Capacitance–voltage (C–V) characteristics of a damaged layer were studied before and after diluted-HF (DHF) treatment. Results showed that a positive charge is generated at the surface oxide–dislocated Si interface and/or in the bulk oxide after plasma exposure. After DHF treatment, most of the positive charges were removed, while the thickness of the “Si recess” was increased by removing the thick surface oxidized layer. As both the Si recess and remaining dislocated Si, including positive charges, cause the degradation of electrical performance, precise monitoring of the surface structure and understanding its effect on device performance is indispensable for creating advanced devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.