Abstract
Structural, electrical and optical properties of polycrystalline Si (poly-Si) films prepared by catalytic chemical vapor deposition (cat-CVD) method, often called hot-wire CVD method, are demonstrated. Crystalline fraction for the poly-Si films is easily controlled between about 0% and 80% by changing the flow-rate ratio of SiH 4 to H 2 during deposition. Transmission electron microscopy (TEM) observation reveals that cat-CVD poly-Si films with large crystalline fractions consist of columnar grains surrounded with an interlayer amorphous phase. Directional anisotropy in electrical conductivity is also observed, which is correlated with the structural anisotropy observed by TEM. Differences in the property of an amorphous layer in the poly-Si films is also indicated by the temperature-dependence of the conductivity. The origin of the absorption coefficient of cat-CVD poly-Si films is also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.