Abstract
The diffusion phenomenon of a nonionic surfactant, polyoxyethylene sorbitan monooleate (POE-SMO), micelle in aqueous solution was investigated by pulsed field gradient nuclear magnetic resonance (PFG NMR) with a high gradient strength of 17.4 T/m at the diffusion timet d varied from 3 to 300 ms. This high gradient strength allowed us to measure the slow self-diffusion coefficient of POE-SMO micelle, and the short diffusion time below 10 ms showed the restricted diffusion of the micelle. At the shortt d the self-diffusion of the micelle was restricted and the restricted sizes were 1.8, 1.5, and 0.8 μm for the POE-SMO concentration of 100, 200 and 300 mM, respectively, and 0.6 μm for the POE-SMO only. The possible reason of this restriction was assumed to be the formation of a spatial network or a micellar clustering. Furthermore, a proton exchange between water molecule and surfactant OH group on the micelle surface was proposed. With respect to this proposal, the residence time of the proton at the micelle surface and the thickness of the surface were investigated from proton self-diffusion coefficients by PFG NMR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.