Abstract

Cysteine proteinase B (CPB) is a significant virulence factor for Leishmania infections. Upon processing from its zymogen form, it happens a release of the immunomodulatory CPB C-terminal extension (cyspep) into the cytoplasm of the macrophage. Epitopes derived from this fragment were shown to influence the proportion of lymphocytes CD8+ upon infection, favoring the parasite escaping from the host́s immune system. At present, there is no available structural data of cyspep, which impairs a proper understanding of its biological functions. Here, we attempted to build molecular models for this fragment and subsequently evaluate their stabilities in aqueous solution from molecular dynamics simulations analysis. Characterization of our models obtained with distinct techniques (comparative modeling, threading, and ab initio) indicates a prevalence of β−sheets in agreement with consensus secondary structure predictions. Simulation data supported this finding since the formation of new strands, along with a rapid disruption of helical content, were observed. Overall, this study provides a rationalization of epitope mapping data and an improved understanding of cyspep antigenicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.