Abstract

A novel coronavirus disease (COVID-19) caused by SARS-CoV2 has now spread globally. Replication/transcription machinery of this virus consists of RNA-dependent RNA polymerase (nsp12 or RdRp) and its two cofactors nsp7 and nsp8 proteins. Hence, RdRp has emerged as a promising target to control COVID-19. In the present study, we are reporting a novel inhibitor VTRM1.1 against the RdRp protein of SARS CoV2. A series of antivirals were tested for binding to the catalytic residues of the active site of RdRp protein. In-silico screening, molecular mechanics, molecular dynamics simulation (MDS) analysis suggest ribavirin, and remdesivir have good interaction with the binding site of the RdRp protein as compared to other antiviral investigated. Hence, ribavirin and remdesivir were used for the denovo fragments based antiviral design. This design, along with docking and MDS analysis, identified a novel inhibitor VTRM1 that has better interaction with RdRp as compared to their parent molecules. Further, to produce a lead-like compound, retrosynthetic analysis, and combinatorial synthesis were performed, which produces 1000 analogs of VTRM1. These analogs were analysed by docking and MDS analysis that identified VTRM1.1 as a possible lead to inhibit RdRp protein. This lead has a good docking score, favourable binding energy and bind at catalytic residues of the active site of RdRp. The VTRM1.1 also interacts with RdRp in the presence of RNA primer and other cofactors. It was also seen that, VTRM1.1 do not have off-target in human. Therefore, the present study suggests a hybrid inhibitor VTRM1.1 for the RNA-dependent RNA polymerase of SARS CoV2 that may be useful to control infection caused by COVID-19.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call