Abstract
Thysanoptera-induced galls commonly culminate in simple folding or rolling leaf gall morphotypes. Most of these galls are induced by members of the suborder Tubulifera, with only a few species of the suborder Terebrantia being reported as gall inducers. The Terebrantia, as most of the gall inducers, manipulates the host plant cellular communication system, and induces anatomical and biochemical changes in its host plant. In an effort to keep its homeostasis, the host plant reacts to the stimuli of the galling insect and triggers chemical signaling processes. In contrast to free-living herbivores, the signaling processes involving galling herbivores and their host plants are practically unknown. Current investigation was performed into two steps: first, we set the structural profile of non-galled and galled leaves, and looked forward to find potential alterations due to gall induction by an undescribed species of Nexothrips (suborder Terebrantia) on Myrcia splendens. Once oil glands had been altered in size and number, the second step was the investigation of the chemical profile of three tissue samples: (1) non-galled leaves of a control individual, (2) non-galled leaves of galled plants, and (3) galls. This third sample was divided into two groups: (3.1) galls from which the inducing thrips were manually removed and (3.2) galls macerated with the inducing thrips inside. The chemical profile was performed by gas chromatography/ mass spectrometric detector after headspace solid-phase extraction. The galling activity of the Nexothrips sp. on M. splendens culminates in mesophyll compactness interspersed to diminutive hypersensitive spots, development of air cavities, and the increase in size and number of the secretory glands. Seventy-two compounds were completely identified in the volatile profile of the three samples, from which, sesquiterpenes and aldehydes, pertaining to the “green leaf volatile” (GLVs) class, are the most abundant. The rare event of gall induction by a Terebrantia revealed discrete alterations toward leaf rolling, and indicated quantitative differences related to the plant bioactivity manipulated by the galling thrips. Also, the content of methyl salicylate has varied and has been considered a potential biomarker of plant resistance stimulated as a long-distance effect on M. splendens individuals.
Highlights
Among the galling insects, Thysanoptera, commonly known as thrips, are suckers and induce their galls (Meyer, 1987) by means of chemical and/or mechanical stimuli, and alter the development of their host plant tissues (Mani, 1964; Hori, 1992)
Our study focuses on a rolling gall morphotype induced by a tiny Thripinae, an undescribed species of Nexothrips on M. splendens (Sw) DC, and it aimed to (1) characterize gall anatomical structure to elucidate how the host plant cell an tissue responses lead to the rolling of leaf lamina; (2) quantify the number and area of the essential oil-producing glands in order to determine whether the gall induction alters the host leaf potential for the production of volatiles; and (3) trace the composition of the volatile compounds emitted by non-galled leaves of a plant totally free of galls, by non-galled leaves of galled plants, and by Nexothrips sp. galls to detect possible biomarkers of the biotic stress related to gall induction and establishment
The structural profile of M. splendens non-galled leaves and galls revealed that the main alteration regards the number and size of the oil glands
Summary
Thysanoptera, commonly known as thrips, are suckers and induce their galls (Meyer, 1987) by means of chemical and/or mechanical stimuli, and alter the development of their host plant tissues (Mani, 1964; Hori, 1992). The galling organism manipulates the cellular communication system of the host plant by suppressing its defenses (Oates et al, 2016), and induces anatomical and biochemical changes in the host plant (Raman et al, 2005). Gall induction impairs redox homeostasis, and the accumulation of reactive oxygen species in cell walls is responsible for cell wall loosening and consequent cell redifferentiation and hypertrophy (Isaias et al, 2015). Both of these processes are commonly observed during gall growth and development. How the insect is able to achieve such an extraordinary level of control over its host plant is perhaps the most intriguing question surrounding plant-galling insect interaction (Oates et al, 2016), and has not been fully described yet
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have