Abstract

The main component of buckwheat seed storage proteins is 13S globulin. In this study, Tartary buckwheat 13S globulin was separated and its structural features were investigated using Edman sequencing and matrix-assisted laser desorption / ionization time of flight mass spectrometry (MALDI-TOF-MS). The protective effect of its enzymatic hydrolysates against oxidative stress induced by H2 O2 was also evaluated to elucidate the antioxidant mechanism. Results showed that the isolated Tartary buckwheat 13S globulin contained one acidic and one basic subunit, which were linked by a disulfide bond. Six Tartary buckwheat active peptides were obtained from the enzymatic hydrolysates of Tartary buckwheat 13S globulin acidic subunit with a molecular weight of 38 kDa, namely Pep-1, Pep-2, Pep-3, Pep-4, Pep-5, and Pep-6. Pre-treatment of cells with Tartary buckwheat active peptides maintained the redox state balance of HepG2 cells and protected the activity of antioxidant enzymes in HepG2 cells. The Tartary buckwheat active peptides improved oxidative stress in HepG2 cells via the PPAR-α/HO-1 pathway. These results provide an insight into the antioxidant mechanism of Tartary buckwheat 13S globulin and suggest that Tartary buckwheat active peptides can be used as a functional ingredient in the food industry. © 2019 Society of Chemical Industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.