Abstract
Wind energy is one of the world’s current leading renewable energy resources. One of the major aspects of studying wind turbines is the structural dynamics for the turbine structure including blades and support structure. In the current work, the blades of the Advanced Wind Turbine (AWT-27) are investigated in a dynamic approach. Different wind fields have been generated for the study to provide different Design Load Conditions (DLCs). Three laminar wind velocities of 5 m/s, 12 m/s, and 17 m/s were simulated. Turbulent wind flow fields have also been generated at the three standard classes A, B and C of high, medium, and low turbulence intensities respectively. The generated wind fields were used as inputs to calculate the aerodynamic loads for each wind condition using the Blade Element Momentum (BEM) theory. Aerodynamic loads have been calculated, namely, the shear force on five different locations along the blade length. Results of the simulation are summarized such that the shear forces at the blade root, 30%, 50%, 70% of the blade length are known for each wind condition. The summary serves as a guide for further optimization of the blade structural design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.