Abstract

Strontium ion-substituted calcium phosphate-based ceramic scaffolds enhance osteogenesis. The objective of the present study was to optimize the strontium hydroxyapatite (Sr-HA) and beta tricalcium phosphate (β-TCP) ratio in the fabricated scaffolds to enhance their mechanical strength and bioactivity with controlled biodegradability. Porous polyurethane sponge scaffolds containing Sr-HA and β-TCP in varying concentration were developed by dipping 3D sponge pieces into a slurry containing 10% gelatin, proper concentration of biphasic calcium phosphate (BCP) and 3% poly vinyl alcohol. Four different samples [Sr-BCP, Sr-BCP (20/80), Sr-BCP (30/70), Sr-BCP (40/60)] were prepared and were characterized for biodegradability, water uptake capability and cytotoxicity using various techniques. Pure, crystalline, cytocompatible Sr-BCP Scaffolds possessing both micropores and macropores with porosity greater than 80% and water uptake capability above 100% were obtained. Thus, the effective substitution of Sr-HA and β-TCP in varying proportion makes the composite scaffold a distinctive material of bone tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.