Abstract

The treatment of critical-sized bone defects has long been a major problem for surgeons. In this study, an intramedullary nail shaped three-dimensional (3D)-printed porous titanium implant that is capable of releasing strontium ions was developed through a simple and cost-effective surface modification technique. The feasibility of this implant as a stand-alone solution was evaluated using a rabbit's segmental diaphyseal as a defect model. The strontium-loaded implant exhibited a favorable environment for cell adhesion, and mechanical properties that were commensurate with those of a rabbit's cortical bone. Radiographic, biomechanical, and histological analyses revealed a significantly higher amount of bone ingrowth and superior bone-bonding strength in the strontium-loaded implant when compared to an untreated porous titanium implant. Furthermore, one-year histological observations revealed that the strontium-loaded implant preserved the native-like diaphyseal bone structure without failure. These findings suggest that strontium-releasing 3D-printed titanium implants have the clinical potential to induce the early and efficient repair of critical-sized, load-bearing bone defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.