Abstract

Strontium is known to offer a therapeutic benefit to osteoporotic patients by promoting bone formation. Thus, toward engineering scaffolds for bone tissue regeneration we have prepared polymer nanocomposite scaffolds by electrospinning. Strontium carbonate nanoparticles (nSrCO3) were added to poly(ε-caprolactone) (PCL) at 10 and 20wt% to develop nanocomposite fibrous scaffolds (PCL/SrC10 and PCL/SrC20) with fiber diameter in the range of 300⿿500nm. Incorporation of nSrCO3 decreased crystallinity and the elastic modulus of PCL. The composite scaffolds released Sr2+ ions with up to 65ppm in 4days from the PCL/SrC20 scaffolds. Cell studies confirmed that the composite scaffold with 20% nSrCO3 enhanced proliferation of human mesenchymal stem cells in vitro. There was marked increase in mineral deposition up to four folds in PCL/SrC20 suggesting enhanced osteogenesis. This was corroborated by increased mRNA and protein expression of various osteogenic markers such as BMP-2, Osterix and Runx2 in the PCL/SrC20 fibers. Thus, incorporation of nSrCO3 in polymer scaffolds is a promising strategy for bone tissue engineering as an alternative to the use of labile growth factors to impart bioactivity to polymer scaffolds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.