Abstract
An experimental study of Rayleigh–Bénard convection in the strongly turbulent regime is presented. We report results obtained at low Prandtl number (in mercury, Pr = 0.025), covering a range of Rayleigh numbers 5 × 106 < Ra < 5 × 109, and compare them with results at Pr∼1. The convective chamber consists of a cylindrical cell of aspect ratio 1.Heat flux measurements indicate a regime with Nusselt number increasing as Ra0.26, close to the 2/7 power observed at Pr∼1, but with a smaller prefactor, which contradicts recent theoretical predictions. A transition to a new turbulent regime is suggested for Ra ≃ 2 × 109, with significant increase of the Nusselt number. The formation of a large convective cell in the bulk is revealed by its thermal signature on the bottom and top plates. One frequency of the temperature oscillation is related to the velocity of this convective cell. We then obtain the typical temperature and velocity in the bulk versus the Rayleigh number, and compare them with similar results known for Pr∼1.We review two recent theoretical models, namely the mixing zone model of Castaing et al. (1989), and a model of the turbulent boundary layer by Shraiman & Siggia (1990). We discuss how these models fail at low Prandtl number, and propose modifications for this case. Specific scaling laws for fluids at low Prandtl number are then obtained, providing an interpretation of our experimental results in mercury, as well as extrapolations for other liquid metals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.