Abstract

Auditing is an increasingly important operation for computer programming, for example in security (e.g. to enable history-based access control) and to enable reproducibility and accountability (e.g. provenance in scientific programming). Most proposed auditing techniques are ad hoc or treat auditing as a second-class, extralinguistic operation; logical or semantic foundations for auditing are not yet well-established. Justification Logic (JL) offers one such foundation; Bavera and Bonelli introduced a computational interpretation of JL called $\lambda^h$ that supports auditing. However, $\lambda^h$ is technically complex and strong normalization was only established for special cases. In addition, we show that the equational theory of $\lambda^h$ is inconsistent. We introduce a new calculus $\lambda^{hc}$ that is simpler than $\lambda^h$, consistent, and strongly normalizing. Our proof of strong normalization is formalized in Nominal Isabelle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.