Abstract

Herein, tin(IV) sulfide (SnS2) and multiwalled carbon nanotube (MWCNT) composites are fabricated via a simple solution-mixing method in a hydrothermal reactor. SnS2 is closely coupled to the MWCNT surface, thus forming a coaxial nanostructure. Examination by X-ray photoelectron spectroscopy and scanning transmission electron microscopy indicates that the strong interface between SnS2 and the MWCNTs in the composite material is due to the formation of Sn-O and Sn-S bonds. In addition, an examination of the temperature-dependent thermoelectric (TE) properties demonstrates that the SnS2-MWCNT hybrid composite with 3 wt % MWCNTs exhibits the maximum power factor of ∼91.34 μW/(m·K2) at 500 K, which is ∼50 times larger than that of the pristine SnS2. These results highlight the fabrication and enhanced TE properties of hybrid composites via the coupling of SnS2 and MWCNTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.