Abstract

Abstract The search for long-lived quantum memories, which can be efficiently interfaced with flying qubits, is longstanding. One possible solution is to use the electron spin of a color center in diamond to mediate interaction between a long-lived nuclear spin and a photon. Realizing this in a nanodiamond furthermore facilitates the integration into photonic devices and enables the realization of hybrid quantum systems with access to quantum memories. Here, we investigated the spin environment of negatively charged silicon-vacancy centers in a nanodiamond and demonstrate strong coupling of its electron spin, while the electron spin’s decoherence rate remained below 1 MHz. We furthermore demonstrate multi-spin coupling with the potential to establish registers of quantum memories in nanodiamonds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call